Merrickville Wastewater System

2021 Annual Report

January 1, 2021 – December 31, 2021

Prepared By

Contents

Compliance Report Card	1
System/Process Description	1
Proposed Alterations, Extensions, or Replacement to Works	2
Effluent Quality Assurance or Control Measures	2
Treatment Flows	3
Raw Flow (m³/d)	3
Annual Comparison (m³)	3
Septage Volumes	4
Raw Sewage Quality	4
Effluent Quality	4
Effluent Exceedance Summary Limit	4
Other Issues	
Effluent Parameter Summary	5
Carbonaceous Biological Oxygen Demand (CBOD5)	
Total Suspended Solids	6
Total Phosphorus	7
Total Ammonia Nitrogen	8
Acute Lethality	8
E-coli	9
pH	9
Biosolids	10
Biosolids Disposal Summary	10
Annual Comparison	10
Summary of Complaints	10
Summary of Bypass/Overflows	11
Summary of Spills/Abnormal Discharges	11
Maintenance	
Maintenance Highlights	
Calibration	
Facility Performance Assessment Report	
Biosolids Quality Report	
Flow Meter Calibration Records	

Compliance Report Card

Compliance Event	# of Events	Details
Ministry of Environment Inspections	0	No Inspection's during the reporting period
Ministry of Labour Inspections	0	No Inspection's during the reporting period
Effluent Parameter Exceedances	1	Phosphorus exceeded the regulatory limit in February 2021
Bypass/Overflows	0	No Bypass or Overflows to report for this reporting period
Community Complaints	0	No community complaints during the reporting period
Spills	1	1 spill during the reporting period

System/Process Description

The Merrickville Wastewater system utilizes an ISAM treatment system. This system incorporates a surge/anoxic mix tank as part of the tank to optimally control the process and provides rapid and complete treatment. The surge tank provides flow and nutrient equalization to optimally provide treatment at the full range of flows and loadings.

The secondary treatment process employs sequencing batch reactor (SBR) technology consisting of anaerobic tanks, anoxic tanks and a sequencing batch reactor. The Sequencing Batch Reactor incorporates an anaerobic selector chamber which provides consistent phosphorous removal by subjecting the recirculated biomass to anaerobic conditions, forcing the release of phosphorous, but also creates soluble carbon as a food source for phosphorous removal through anaerobic conversion of settle able BOD to soluble carbon. Additionally, anaerobic sludge digestion occurs in the anaerobic selector chamber, reducing waste solids production by up to 65% for the entire secondary process. Effluent is disinfected using Ultraviolet disinfection. Permanent Diesel generator is on-site to provide back-up power.

Page | **2**

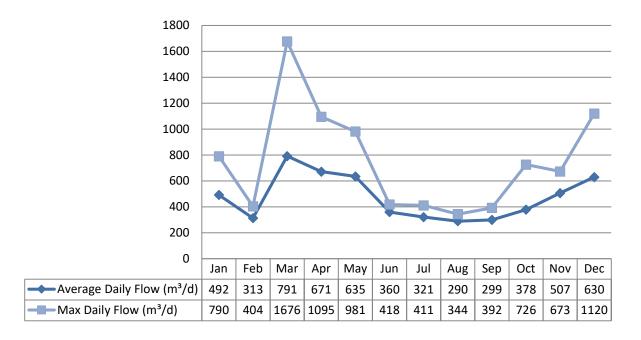
Proposed Alterations, Extensions, or Replacement to Works

There are no proposed alterations, extensions or replacements that would affect the Certificate of Approval.

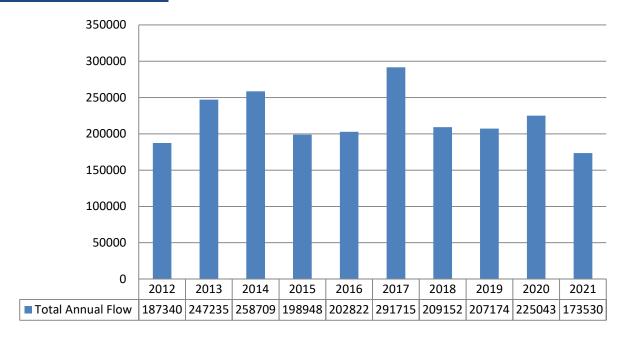
Effluent Quality Assurance or Control Measures

The Village of Merrickville-Wolford facilities are part of OCWA's operational Mississippi Cluster. The facilities are supported by cluster, regional and corporate resources. Operational Services are delivered by OCWA staff that live and work in the community.

OCWA operates facilities in compliance with applicable regulations. The facility has comprehensive manuals detailing operations, maintenance, instrumentation, and emergency procedures. All procedures are treated as active documents, with annual reviews.


OCWA has additional "Value Added" and operational support services that the Village of Merrickville-Wolford benefits from including:

- Access to a network of operational compliance and support experts at the regional and corporate level, as well as affiliated programs that include the following:
 - Quality & Environmental Management System, Occupational Health & Safety System and an internal compliance audit system.
 - Process Data Collection (PDC) facility operating information repository, which consolidates field data, online instrumentation, and electronic receipt of lab test results for reporting, tracking and analysis.
 - Work Management System (WMS) that tracks and reports maintenance activity, and creates predictive and preventative reports.
 - Outpost 5 wide-area SCADA system allows for process optimization and data logging, process trending, remote alarming and optimization of staff time.
- Client reporting which includes operational data, equipment inventory, financial statements, maintenance work orders, and capital status reports
- Site-Specific Contingency Plans and Standard Operating Procedures
- Use of accredited laboratories
- Additional support in response to unusual circumstances, and extra support in an emergency.
- Use of sampling schedules for external laboratory sampling


Treatment Flows

Raw Flow (m³/d)

Annual average flow for 2021 was 475.4 m³/d. The Average daily flow rated capacity is 800 m³/d. This is based on an annual average. A flow reduction plan was established for 2018.

Annual Comparison (m³)

Septage Volumes

Month	Septage Received (m³)
March	9.6
April	16.3
May	14.0
June	17.7
July	19.6
August	14.8
September	13.2
October	14.8

Raw Sewage Quality

Results of raw sewage concentrations and loadings are available in the Facility Performance Assessment Report in Appendix A.

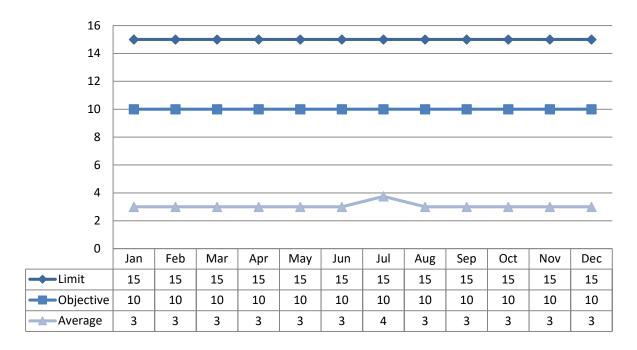
Effluent Quality

The limits are based on current requirements in the facilities Environmental Compliance Approval. Laboratory samples are submitted to an accredited laboratory for regulatory analysis.

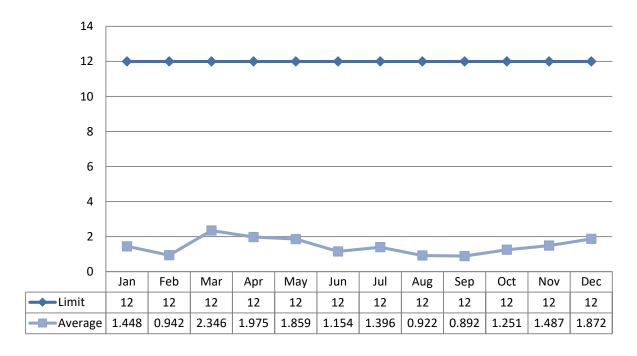
The Federal Government also regulates certain sewage effluent parameter under the Federal Fisheries Act. The results are submitted to Environment Canada (WESR) on a quarterly basis.

Effluent Exceedance Summary Limit

Sample	Date	Parameter	Exceedance of	Limit	Value		
Final Effluent	February 2021	Phosphorus	Regulatory Limit	0.63 mg/L	0.68 mg/L		

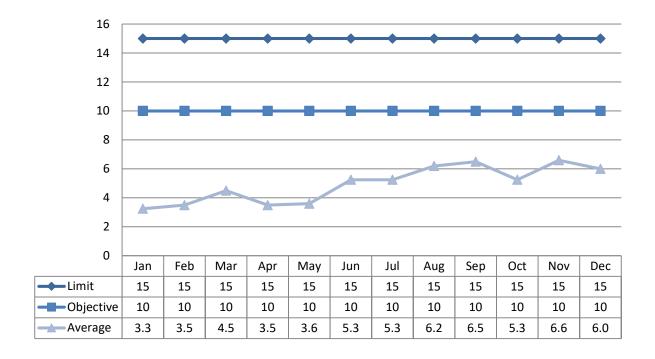

Other Issues

There were no other issues during the reporting year.

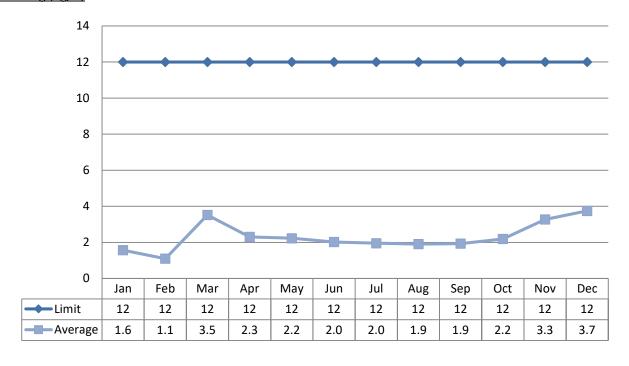

Effluent Parameter Summary

Carbonaceous Biological Oxygen Demand (CBOD5)

Concentration (mg/L)



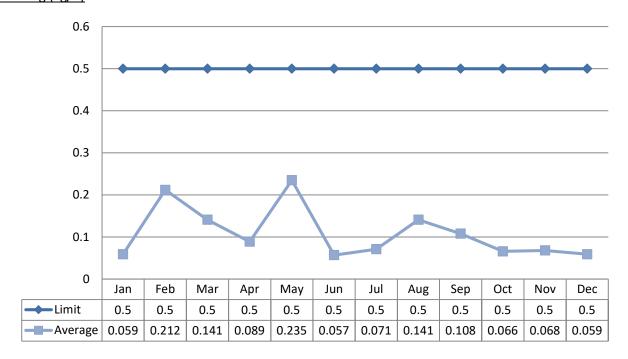
Loading (kg/d)



Total Suspended Solids

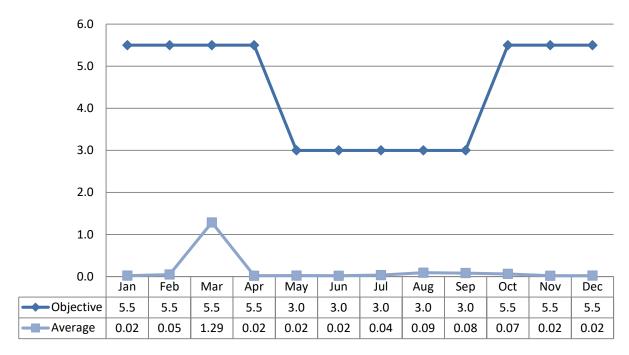
Concentration (mg/L)

Loading (kg/d)



Total Phosphorus

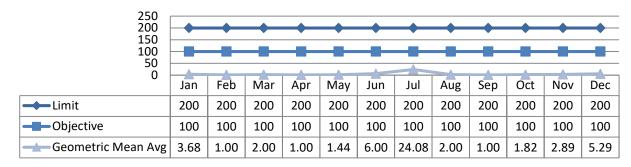
Concentration (mg/L)


Loading (kg/d)

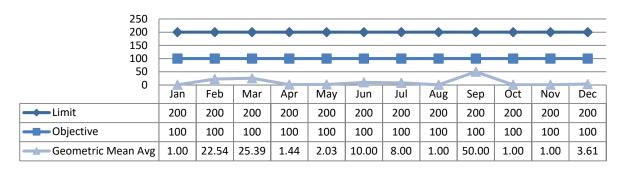
Total Ammonia Nitrogen

Limit is based on effluent being "Non-Acutely Lethal". See Acute Lethality results below.

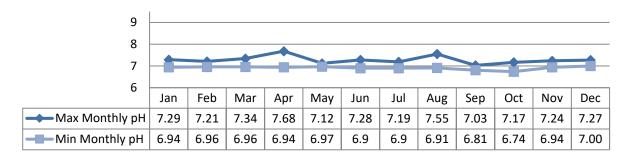
Concentration (mg/L)

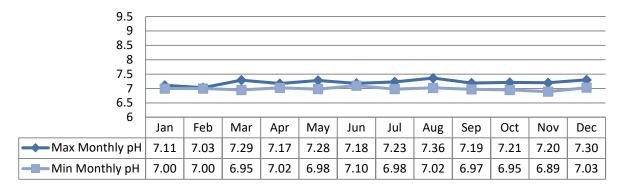

Acute Lethality

Semi-Annual sampling is required for acute lethality (Rainbow Trout and Daphnia Magna). Results are displayed as % mortality.


Date	Rainbow Trout	Daphnia Magna
April 20-2021	0%	0%
September 15, 2021	0%	0%

E-coli

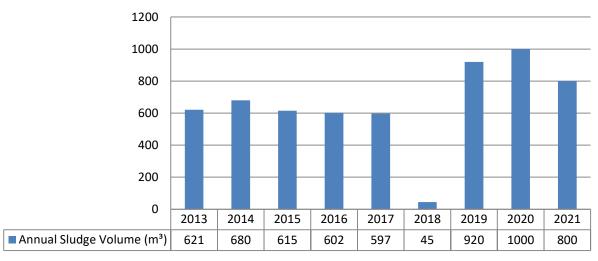

SBR1


SBR2

<u>pH</u> SBR 1

<u>SBR 2</u>

Sludge generated from the treatment plant was spread on agricultural land during the spreading season as per the Nutrient Management Act O.Reg 267/03. During the winter sludge is stored on-site until the Organic Soil Conditioning Sites are available for spreading.


During the spreading season the operating authority contracts sludge haulage. Sludge haulage is contracted to Terrapure Environmental who maintains a bank of available sites for disposal of biosolids. Biosolids quality report in Appendix B.

Biosolids Disposal Summary

For 2021, Terrapure hauled 800 m³ from the sludge holding tank.

Date	Site	Site NASM Plan number		
May 7-18 2021	Sunol Farms – Turner Farm	24589	800	
			800	

Annual Comparison

Note: In 2018, extremely wet weather conditions resulted in limited hauling opportunities.

Summary of Complaints

The following were received community complaints related to the operations of the Merrickville WPCP and Collection System.

Date	Location	Location Details Corrective Ac					
There were no Community Complaints during the reporting period.							

Summary of Bypass/Overflows

Date	Location	Details	Corrective Action Taken				
There were no Bypass' or Overflows during the reporting period.							

Summary of Spills/Abnormal Discharges

Date	Location	Details	Corrective Action Taken		
March 12 2021	St. Lawrence Street	Blocked sanitary sewer	The spill was disinfected using chlorine upstream of the storm sewer and dechlorination was used before it entered the storm sewer		

Maintenance

OCWA uses a risk-based preventative maintenance framework that ensures assets are maintained to manufacturer's and/or industry standards. Maintenance is completed using various tools and operational supports. The Eastern Regional Hub has specialized certified staff such as Millwrights, Electricians and Instrumentation Specialists to name a few.

OCWA uses a Workplace Maintenance System (WMS). WMS is a maintenance tracking system that can generate work orders as well as give summaries of completed and scheduled work. During the year, the operating authority at the facility generates scheduled work orders on a weekly, monthly and annual basis. The service work is recorded in the work order history. This ensures routine and preventive maintenance is carried out. Emergency and capital repair maintenance is completed and added to the system.

Capital projects are listed and provided to the Village of Merrickville-Wolford in the form of a "Capital Forecast". This list is developed by facility staff and provides recommendations for facility components requiring upgrading or improvement.

Maintenance Highlights

WO #	Summary
2094235	Capital Raw sewage pump repair
2094244	Capital collection system flushing and camera
2094252	Capital Replacement UV bulbs bank A
2094254	Capital Tools replacement
2094258	Capital Jersey barrier parking lot

Page | 12

Calibration

The flow meters were calibrated on May 19, 2021. Calibration Reports are attached in Appendix C. There is no on-line effluent monitoring equipment installed at this facility.

Appendix A

Facility Performance Assessment Report

Ontario Clean Water Agency Performance Assessment Report Wastewater/Lagoon

om: 01/01/2021 to 31/12/2021

Facility: [1162] MERRICKVILLE WASTEWATER TREATMENT FACILITY

Works: [110001729]

Flows: Raw Flow: Total - Raw Sewage (m³)	01/2021	02/2021	03/2021	04/2021	05/2021	06/2021	07/2021	08/2021	09/2021	10/2021	11/2021	12/2021	<total></total>	<ava></ava>		
												ILILOLI	< I Otal>	<avg></avg>	<max></max>	<criteria></criteria>
	15261.00	8773.00	24531.00	20142.00	19671.00	10791.00	9961.00	8976.00	8980.00	11730.00	15195.00	19519.00	173530.00			
Raw Flow: Avg - Raw Sewage (m³/d)	492.29	313.32	791.32	671.40	634.55	359.70	321.32	289.55	299.33	378.39	506.50	629.65	173530.00	473.94		_
	790.00			1095.00	981.00	418.00		344.00	392.00	726.00	673.00	1120.00		473.94	1676.00	
Raw Flow: Max - Raw Sewage (m³/d)		404.00	1676.00				411.00 11540.00	9525.00		12924.00			175015.00		1676.00	
Eff. Flow: Total - Final Effluent (m³)	14964.00	8788.00	24244.00	19748.00	19210.00	11543.00			8922.00 297.40		14865.00	19342.00	175615.00	479.55		
Eff. Flow: Avg - Final Effluent (m³/d)	482.71	313.86	782.06	658.27	619.68	384.77	372.26	307.26		416.90	495.50	623.94		4/9.55	1005.00	
Eff. Flow: Max - Final Effluent (m³/d)	799.00	403.00	1665.00	1064.00	981.00	507.00	501.00	411.00	408.00	707.00	675.00	1103.00			1665.00	
Carbonaceous Biochemical Oxygen Demand: CBOD:																
Eff: Avg cBOD5 - Final Effluent (mg/L) <	3.000	< 3.000	< 3.000	< 3.000	< 3.000	< 3.000 <	3.750	< 3.000	< 3.000	3.000	< 3.000	< 3.000		< 3.063	< 3.750	15.0
Eff: # of samples of cBOD5 - Final Effluent (mg/L)	4	4	6	4	5	4	4	5	4	4	5	4	53			
Loading: cBOD5 - Final Effluent (kg/d) <	1.448	< 0.942	< 2.346	< 1.975	< 1.859	< 1.154 <	1.396	< 0.922	< 0.892	1.251	< 1.487	< 1.872		< 1.462	< 2.346	
Biochemical Oxygen Demand: BOD5:																
Raw: Avg BOD5 - Raw Sewage (mg/L)	96.000	223.000	159.000	80.000	71.000	134.000	235.000	216.000	213.000	152.000	97.000	112.000		149.000	235.000	
Raw: # of samples of BOD5 - Raw Sewage (mg/L)	1	1	1	1	1	1	1	1	1	1	1	1	12			
Total Suspended Solids: TSS:																
Raw: Avg TSS - Raw Sewage (mg/L)	150.000	330.000	310.000	124.000	86.000	176.000	236.000	255.000	255.000	220.000	120.000	162.000		202.000	330.000	
Raw: # of samples of TSS - Raw Sewage (mg/L)	1	1	1	1	1	1	1	1	1	1	1	1	12			
Eff: Avg TSS - Final Effluent (mg/L) <	3.250	< 3.500	< 4.500	< 3.500	< 3.600	< 5.250 <	5.250	< 6.200	< 6.500	5.250	6.600	< 6.000		< 4.950	6.600	15.0
Eff: # of samples of TSS - Final Effluent (mg/L)	4	4	6	4	5	4	4	5	4	4	5	4	53			
Loading: TSS - Final Effluent (kg/d) <	1.569	< 1.099	< 3.519	< 2.304	< 2.231	< 2.020 <	1.954	< 1.905	< 1.933 •	2.189	3.270	< 3.744		< 2.311	3.744	
Percent Removal: TSS - Raw Sewage (mg/L)	97.833	98.939	98.548	97.177	95.814	97.017	97.775	97.569	97.451	97.614	94.500	96.296			98.939	
Total Phosphorus: TP:																
Raw: Avg TP - Raw Sewage (mg/L)	3.200	7.560	6.530	2.490	1.980	4.420	6.720	5.790	5.640	6.360	3.050	3.260		4.750	7.560	
Raw: # of samples of TP - Raw Sewage (mg/L)	1	1	1	1	1	1	1	1	1	1	1	1	12			
Eff: Avg TP - Final Effluent (mg/L)	0.123	0.675	0.180	0.135	< 0.380	0.148	0.190	0.460	0.362	0.158	0.138	0.095		< 0.254	0.675	0.63
Eff: # of samples of TP - Final Effluent (mg/L)	4	4	6	4	5	4	4	5	4	4	5	4	53			
Loading: TP - Final Effluent (kg/d)	0.059	0.212	0.141	0.089	< 0.235	0.057	0.071	0.141	0.108	0.066	0.068	0.059		< 0.109	0.235	
Percent Removal: TP - Raw Sewage (mg/L)	96.172	91.071	97.243	94.578	80.808	96.663	97.173	92.055	93.573	97.524	95.475	97.086			97.524	
Nitrogen Series:																
Raw: Avg TKN - Raw Sewage (mg/L)	24.600	51.600	44.600	17.800	13.500	30.500	51.500	45.300	42.000	56.600	24.000	21.900		35.325	56.600	
Raw: # of samples of TKN - Raw Sewage (mg/L)	1	1	1	1	1	1	1	1	1	1	1	1	12			
Eff: Avg TAN - Final Effluent (mg/L) <	0.023	0.050	< 1.287	0.020	0.024	0.020	0.035	< 0.093	0.083	0.065	< 0.020	< 0.023		< 0.145	1.287	
Eff: # of samples of TAN - Final Effluent (mg/L)	4	4	6	4	5	4	4	4	4	4	5	4	52			
Loading: TAN - Final Effluent (kg/d) <	0.011	0.016	< 1.006	0.013	0.015	0.008	0.013	< 0.028	0.025	0.027	< 0.010	< 0.014		< 0.099	1.006	
Disinfection:																
Eff: GMD E. Coli - Eff SBR2 (cfu/100mL)	1.000	22.539	25.391	1.442	2.031	10.000	8.000	1.000	50.000	1.000	1.000	3.606		10.584	50.000	
Eff: GMD E. Coli - Eff SBR1 (cfu/100mL)	3.684	1.000	2.000	1.000	1.442	6.000	24.083	2.000	1.000	1.817	2.893	5.292		4.351	24.083	
Eff: # of samples of E. Coli - Eff SBR2 (cfu/100mL)	2	2	6	3	4	1	1	2	1	1	1	2	26			
Eff: # of samples of E. Coli - Eff SBR1 (cfu/100mL)	3	2	3	3	3	1	2	1	2	3	4	2	29			

Appendix B

Biosolids Quality Report

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC Solids and Nutrients

Facility: MERRICKVILLE WASTEWATER TREATMENT FACILITY

Works: 1162

Period: 01/01/2021 to 12/01/2021

Facility Works Number: 1.10001729E8

Facility Name: MERRICKVILLE WASTEWATER TREATMENT FACILITY
Facility Owner: Municipality: The Village of Merrickville-Wolford

Facility Classification: Class 2 Wastewater Treatment

Receiver:

Service Population:

Total Design Capacity: m3/day

Period Being Reported: 01/01/2021 12/01/2021

Rideau River

Note: all parameters in this report will be derived from the Bslq Station

Month	Total Sludge Hauled (m3)	Avg. Total Solids (mg/L)	Avg. Volatile Solids (mg/L)	Avg. Total Phosphorus (mg/L)	Ammonia (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	TKN (mg/L)	Ammonia + Nitrate (mg/L)	Potassium (mg/L)		
Site	MERRICKVILLE WASTEWATE	ICKVILLE WASTEWATER TREATMENT FACILITY										
Station	Bslq Station only											
Parameter Short Name	HauledVol	TS	vs	ТР	NH3p_NH4p_N	NO3-N	NO2-N	TKN	calculation in	К		
T/s	IH Month.Total		Lab Published Month Mean		Lab Published Month Mean		Lab Published Month Mean	Lab Published Month Mean	report - no T/S	Lab Published Month Mean		
Jan		54,600.000	35,400.000	1,360.000	431.000	1.000	1.000	2,540.000	216.000	41.700		
Feb		60,400.000	37,600.000	1,020.000	272.000	0.100	0.100	1,880.000	136.050	41.400		
Mar		56,300.000	35,200.000	2,330.000	259.000	0.100	0.100	4,350.000	129.550	41.600		
Apr		62,800.000	39,200.000	1,160.000	262.000	1.000	1.000	2,100.000	131.500	54.000		
May	801.000	41,950.000	24,900.000	982.500	319.000	1.200	0.550	1,965.000	160.100	36.100		
Jun												
Jul												
Aug		34,700.000	25,000.000	784.000	196.000	1.000	1.000	1,560.000	98.500	38.200		
Sep		46,300.000	26,600.000	1,130.000	333.000	1.000	1.000	1,800.000	167.000	40.500		

Oct		49,500.000	29,700.000	770.000	269.000	1.000	1.000	1,140.000	135.000	42.700
Nov										
Dec		51,500.000	31,900.000	1,110.000	202.000	0.100	0.100	1,880.000	101.050	46.000
Average	801.000	50,894.444	31,722.222	1,182.944	282.556	0.722	0.650	2,135.000	141.639	42.467
Total	801.000	458,050.000	285,500.000	10,646.500	2,543.000	6.500	5.850	19,215.000	1,274.750	382.200

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC Metals and Criteria

Facility: MERRICKVILLE WASTEWATER TREATMENT FACILITY

Works: 1162

Period: 01/01/2021 to 12/01/2021

Note: all parameters in this report will be derived from the Bslq Station

Month	Arsenic (mg/L)	Cadmium (mg/L)	Cobalt (mg/L)	Chromium (mg/L)	Copper (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Lead (mg/L)	Selenium (mg/L)	Zinc (mg/L)
Site	MERRICKVILLE W	ASTEWATER TRE	ATMENT FACILITY		1	l	I	I	l .		
Station	Bslq Station only	1									
Parameter Short Name	As	Cd	Со	Cr	Cu	Hg	Мо	Ni	Pb	Se	Zn
T/s	Lab Published Month Mean										
Jan	0.100	0.060	0.170	1.000	30.700	0.032	0.600	1.170	1.300	0.300	46.000
Feb	0.200	0.080	0.230	1.190	33.700	0.030	0.690	1.360	1.300	0.300	54.000
Mar	0.100	0.040	0.150	0.860	23.000	0.022	0.470	1.100	0.900	0.200	36.900
Apr	0.200	0.060	0.230	1.130	34.000	0.028	0.660	1.530	1.400	0.300	51.500
May	0.100	0.045	0.095	0.740	20.650	0.016	0.400	0.885	1.350	0.200	30.400
Jun											
Jul											
Aug	0.100	0.060	0.160	0.790	21.600	0.016	0.400	0.810	0.900	0.200	33.400
Sep	0.100	0.050	0.260	1.130	34.100	0.023	0.640	1.360	1.400	0.300	51.900
Oct	0.200	0.150	0.250	1.320	41.400	0.021	0.810	2.340	1.700	0.300	63.800
Nov											
Dec	0.100	0.090	0.440	1.270	39.300	0.025	0.790	2.000	1.500	0.100	65.500
Average	0.133	0.071	0.221	1.048	30.939	0.024	0.607	1.395	1.306	0.244	48.156
Concentrations (mg/kg of	170.000	34.000	340.000	2,800.000	1,700.000	11.000	94.000	420.000	1,100.000	34.000	4,200.000
Metal Concentrations in Sludge (mg/kg)	2.620	1.386	4.334	20.587	607.903	0.465	11.920	27.410	25.652	4.803	946.185
			1								

Ontario Clean Water Agency Biosolids Quality Report - Liquid - Based on Last 4 Samples Digestor Type: AEROBIC

Facility: Works: Period: MERRICKVILLE WASTEWATER TREATMENT FACILITY

1162 01/01/2021 to 12/01/2021

Note: all parameters in this report will be derived from the Bslq Station

					•			,
Parameter Short Name	Time Series	08/16/2021	09/20/2021	10/18/2021	12/06/2021	Average	Metal Concentrations in Sludge (mg/kg):	Max. Permissible Metal Concentrations (mg/kg of Solids):
As (mg/L)	Lab Published	0.100	0.100	0.200	0.100	0.125	2.747	170
Cd (mg/L)	Lab Published	0.060	0.050	0.150	0.090	0.088	1.934	34
Co (mg/L)	Lab Published	0.160	0.260	0.250	0.440	0.277	6.088	340
Cr (mg/L)	Lab Published	0.790	1.130	1.320	1.270	1.128	24.791	2800
Cu (mg/L)	Lab Published	21.600	34.100	41.400	39.300	34.100	749.451	1700
Hg (mg/L)	Lab Published	0.016	0.023	0.021	0.025	0.021	0.462	11
Mo (mg/L)	Lab Published	0.400	0.640	0.810	0.790	0.660	14.505	94
Ni (mg/L)	Lab Published	0.810	1.360	2.340	2.000	1.627	35.758	420
Pb (mg/L)	Lab Published	0.900	1.400	1.700	1.500	1.375	30.220	1100
Se (mg/L)	Lab Published	0.200	0.300	0.300	0.100	0.225	4.945	34
Zn (mg/L)	Lab Published	33.400	51.900	63.800	65.500	53.650	1,179.121	4200
E. Coli: Dry Wt (cfu/g)	Lab Published						E.Coli average is the GMD	
TS (mg/L)	Lab Published	34,700.000	46,300.000	49,500.000	51,500.000	45,500.000		
VS (mg/L)	Lab Published	25,000.000	26,600.000	29,700.000	31,900.000	28,300.000		
TP (mg/L)	Lab Published	784.000	1,130.000	770.000	1,110.000	948.500		
NO2-N (mg/L)	Lab Published	1.000	1.000	1.000	0.100	0.775		
TKN (mg/L)	Lab Published	1,560.000	1,800.000	1,140.000	1,880.000	1,595.000		
K (mg/L)	Lab Published	38.200	40.500	42.700	46.000	41.850		
NH3p_NH4p_N (mg/L)	Lab Published	196.000	333.000	269.000	202.000	250.000		
NO3-N (mg/L)	Lab Published	1.000	1.000	1.000	0.100	0.775		

Appendix C

Flow Meter Calibration Records

10-830 Industrial Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Town of Merrickville

Calibration of Waste Water Flow Meters Report May 19 2021

Prepared For: O.C.W.A. Merrickville

Calibration Date: May 19th 2021

Calibration Due: May 19th 2022

Verifications performed by: Tim Stewart

Report prepared by: Tim Stewart

10-830 Industrial Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Table of Contents

1	LIST OF VERIFIED DEVICES	- 2 -
2	EQUIPMENT USED	- 2 -
3	PROCEDURES USED	- 2 -
3.1 F	lowmeter Verification	- 2 -
4	INSTRUMENT VERIFICATION	- 3 -
4.1 F	IT 701 Sludge Flow	- 4 -
4.2 F	IT 402 Final Effluent Flow	- 5 -
4.3 F	IT 501 Septage/Supernatant Flow	- 6 -
4.4 F	IT 305 Raw Sewage Flow	-7-
510	Calibration Cortificates	_ 8 _

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

1 List of Verified Devices

This letter is to confirm that annual verification on the following devices has been completed.

ID	Process	Make/Model	Results
FIT-701	Sludge	E and H / Promag 53 W	Passed
FIT-402	Final Effluent	E and H / Promag 53 W	Passed
FIT-501	Septage/Supernatant	E and H / Promag 53 W	Passed
FIT-305	Raw Sewage	E and H / Promag 53 W	Passed

2 Equipment Used

The following equipment was used to perform the calibrations:

E and H Fieldcheck

3 Procedures Used

To verify the equipment standard verification procedures developped by the Township were used and standard industry practice.

3.1 Flowmeter Verification

Verification, Magnetic Flow Meter:

The verification of Endress & Hauser Flow measuring devices (the device under test) are checked for the following characteristic values:

1. Functionality and deviation in flow measurement.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

2. Deviation in the current and frequency outputs in reference to the flow rate data determined by the measuring device.

<u>Measuring devices</u>: The verification system consists of the FlowCheck flow simulator, the Simubox and the appropriate connection cables.

<u>FieldCheck</u>: The FieldCheck flow simulator generates the flow simulation signals and processes the measured values sent back from the transmitter.

<u>Simubox</u>: The Simubox ensures that the FieldCheck simulation signal are correctly converted in the transmitter, by comparing the measurements returned from the transmitter to data stored within the Simubox for various parameters (Electromagnetic Field vs. Flow, Flow vs. Current, and various other parameters important in verifying the proper functionally of the device under test.

4 Instrument Verification

See the following pages of reports for individual equipment.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.1 FIT 701 Sludge Flow

Flow Transmitter Instrument Calibration/Verification Report Date: May 19, 2021

As Found Results

Client Details Instrument Details

Customer O.C.W.A. Merrickville Manufacturer Eand H

 Contact
 Jeff Morrison
 Model
 Promag 53 DN 100

 613-257-9223
 Serial Number
 KF081F16000

Calibrations by: Tim Stewart Process Sludge
Capital Controls Tag ID FIT-701

 Capital Controls
 Tag ID
 FIT-701

 613-248-1999
 Output
 4-20 mA

Calibration Equipment

 Make
 Fluke Meter
 FieldCheck

 Model
 725
 50098801

 Serial #
 8759025
 990B1402000

Errors are expressed in percentage of Full Scale

Test Procedure FieldCheck

 Zero Test
 Amplifier
 Current Output
 Sensor Test

 Current out = +0.001 mA
 MP1 = -0.45 %
 MP1 = +0.002 mA
 Coil Current Rise = 6.40

 MP2 = -0.48 %
 MP2 = -0.009 mA
 Rated for 5.00

MP3 = +0.03 % MP3 = +0.003 mA Potential Difference = 0.00 MP4 = +0.07 % MP4 = +0.002 mA

Comments

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.2 FIT 402 Final Effluent Flow

Flow Transmitter As Found Results Instrument Calibration/Verification Report

Date: May 19, 2021

Client Details

Customer

O.C.W.A. Merrickville

Contact Jeff Morrison

613-257-9223

Calibrations by: Tim Stewart

Capital Controls 613-248-1999 Instrument Details

Manufacturer

Eand H Promag 53W DN 250

Model Serial Number Location Process Tag ID

Output

DB09BC16000 W.W.T.P. Final Effluent

FIT-402 4-20 mA

Calibration Equipment

 Make
 Fluke Meter
 FieldCheck

 Model
 725
 50098801

 Serial #
 8759025
 990B1402000

Errors are expressed in percentage of Full Scale

Test Procedure FieldCheck

Zero Test

Current out = +0.001 mA

Amplifier MP1 = -0.53 % MP2 = -0.48 % Current Output

MP1 = +0.002 mA MP2 = -0.011 mA

MP3 = -0.01 % MP3 = +0.003 mA MP4 = +0.03 % MP4 = +0.002 mA Sensor Test

Coil Current Rise = 20.25 Rated for 14.60 Potential Difference = 0.00

Comments

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.3 FIT 501 Septage/Supernatant Flow

Flow Transmitter Instrument Calibration/Verification Report Date: May 19, 2021

As Found Results

Client Details

Instrument Details

Customer O.C.W.A. Merrickville Manufacturer Eand H

 Contact
 Jeff Morrison
 Model
 Promag 53W DN 150

 613-257-9223
 Serial Number
 DB09BA16000

.3-257-9223 Serial Number DB09BA16000 Location W.W.T.P.

Calibrations by: Tim Stewart Process Septage/Supernatant

 Capital Controls
 Tag ID
 FIT-501

 613-248-1999
 Output
 4-20 mA

Calibration Equipment

 Make
 Fluke Meter
 FieldCheck

 Model
 725
 50098801

 Serial #
 8759025
 990B1402000

Errors are expressed in percentage of Full Scale

Test Procedure FieldCheck

 Zero Test
 Amplifier
 Current Output
 Sensor Test

 Current out = +0.001 mA
 MP1 = -0.57 %
 MP1 = +0.002 mA
 Coil Current Rise = 17.19

 MP2 = -0.02 %
 MP2 = -0.015 mA
 Rated for 9.60

MP3 = -0.02 % MP3 = +0.003 mA Potential Difference = 3.26 MP4 = +0.01 % MP4 = +0.000 mA

Comments

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.4 FIT 305 Raw Sewage Flow

Flow Transmitter Instrument Calibration/Verification Report Date: May 19, 2021

As Found Results

Client Details Instrument Details

Customer O.C.W.A. Merrickville Manufacturer Eand H

Contact Jeff Morrison Model Promag 53W DN 150

613-257-9223 Serial Number DB09BB16000
Location W.W.T.P.
Calibrations by: Tim Stewart Process Raw Sewage

 Capital Controls
 Tag ID
 FIT-305

 613-248-1999
 Output
 4-20 mA

Calibration Equipment

 Make
 Fluke Meter
 FieldCheck

 Model
 725
 50098801

 Serial #
 8759025
 990B1402000

Errors are expressed in percentage of Full Scale

Test Procedure FieldCheck

 Zero Test
 Amplifier
 Current Output
 Sensor Test

 Current out = +0.002 mA
 MP1 = -0.51 %
 MP1 = +0.001 mA
 Coil Current Rise = 13.35

 MP2 = -0.02 %
 MP2 = -0.011 mA
 Rated for 9.60

MP3 = -0.03 % MP3 = -0.002 mA Potential Difference = 3.29 MP4 = +0.02 % MP4 = -0.010 mA

Comments

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

5.1 Calibration Certificates

Calibration Certificate Kalibrations-Zertifikat

FieldCheck

Page 1 of 2 Seite 1 of 2

Production Number Fabrikationsnummer

Sarial Number

Sədənnummar Məssifastıras

Manufastumr Hersteller 240223

99081402000

Endress+Hauser Flowtec AG

CH-4153 Reinach

Date Of Calibration Karibriordatum

Location

Testing Instruction Prüfenweisung

Test Program Prüfprogramm

Test Ergineer Prüfer 03/03/2021

DG-Greenwood

CatCenter_2

V1.01.10

Jamie

Used Test-Calibration Interface Verwendele Prüß/Kalforierschnithstelle

Used Test-/Callbration Tools
Versionalists Print Melibriormics

Max. Deviation (Specification) Max. Abweichung (Specifikation)

Current Source | Stromquelle

Frequency Source Frequenzgeber

Kelihley DMM2700 due 07/2021 Yokogawa CAL100 due 07/2021

0,01% of end value / des Endwertes (20mA) + 0,02% of signal / des Signals

0.01% of signal / des Signals

Naxes Bemerkungen

The above mentioned calibration tools are traceable to national standards / NIST

Die oben genannten Kalibriermittel sind rückführfsar auf nationale Normale

Date, Signatura: 03/03/2021,

SZX=

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

FieldCheck

Production Number / Fabrikationsnummer: Serial Number / Seriennummer:

240223 99061402000

Page 2 of 2 Seite 2 of 2

Meseuring Data On Incoming i		Raiksi Value	Meas, Value	Umit Value +/-	Pess / Fail
Mesedaten bei der Eingangspi		Vorgabewert	Messwert	Grenzwert +/-	Gui/Fehlerhal
Current Input	mA	0.000	0.000	0.005	Pass/Gut
Strom-Eingang	mA	20.000	20.003	0.010	Pass/Gut
Fractiency input	Hz	0.0	0.0	0.0	Pass/Gut
Fractienza-Eingang	Hz	8000.0	7999.9	4.0	Pass/Gut

Measuring Data After Calibrat Measdaten nach Kalibrierung		Rated Value Vorgabewert	Mess. Value Messwert	Limit Value +/- Grenzwert +/-	
Current Input Strom-Eingang	mA mA mA	0.000 10.000 20.000	0.002 10.003 20.001	0.002 0.004 0.005	
Frequency nout Frequenz-Elingang	Hz Hz Hz	0.0 1000.0 8000.0	0.0 1000.0 8000.0	0.0 1.0 2.0	

Functional Safety Check Funktionaler Sicherheitscheck

This unit has passed the complete Functional Sefety Check. All voltages and currents produced by this unit are within tolerances.

Direces Greät hat den vollständigen funktions en Stehemettscheck bestanden. Alle von diesem Gerät produzierten Spanzunger, und Ströme sind innerhalb der Tolerenz.

Date, Signature: 03/03/2021,

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

Simubox MID

Page 1 of 2 Seite 1 of 2

Production Number Fabricationsnummer

Sedal Number Sedennummer

Manufacturer Hersteller 8784351

JA0FE402000

Endress+Hauser Flowtec AG CH-4153 Reinach

Deta Of Calibration Kalibriardatum

Lorsaion Ort

Testing Instruction Proformeloung

Test Program Prüferogramm Test Engineer

Prüfer

03/03/2021

DG-Greenwood

CalCentar_2

V1.01.10

Jamie

Used Test-/Calibration Interface Verwendele Prüf-/Kalibrierachnittstelle

Used Test-/Calibration Tools Verwendste Prüf⊬Kalibriehn tal

Max. Deviation (Specification)
Max. Abwe chung (Specification)

Current Source Stroniquelle Frequency Source

Frequenzgeden

Kelinley DMM2700 due 07/2021 Yokogawa CAL100 due 07/2021

0,01% of and value / des Endwertes (20mA) + 0,02% of signal / des Signals

0,01% of signal / des Signals

Nates Bemerkutsten The above mentioned calibration tools are traceable to national standards / NIST

Die oben genanntan Kalibriermittel sind rückführbar auf nationale Normale

Date, Signature: 03/03/2021,

NA PROPERTY OF THE PARTY OF THE

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Calibration Certificate Kalibrations-Zertifikat

SimuBox MID

Production Number / Fabrikationsnummen Serial Number / Seriemunnier: 8784051 JAGE ±402000

Page 2 of 2 Seite 2 of 2

Measuring Data On Incoming Inspection Measuring Data On Incoming Inspection (Calculated Vern Values / Beredinste Withlander)	Ratec Value Vorgabewert [µV]	Meas, Value Messwart [JV]	Umit Value #/- Grenzwert =/- [µV]	Paes / Fall Gut/Fehlemafi
Meas, Range 1	57.0	57.C	1.0	Pass/Gut
Meas, Range 2	334.0	332.7	3.0	.Pass/Gut
Meses, Range 3	2064.0	2061.7	10.0	Pass/Gut
Meas, Range 4	11226.0	11821.2	20.0	Pess/Gut

Measuring Data After Calibration Messidaten nach Kalibrierung (Candard Van Valuer/Renet nets Mitalwaus)	Ratec Value Vorgabewert IµV]	Mess, Value Messwer, JuV!	Linst Value +/- Grenzwert +/- (µV)
Maas, Range t	50.0	49.8	0.5
Moas, Range 2	30C.0	300.0	1.0
Maas, Ratgo 3	2000.0	2000.0	3.0
Meas, Range 4	10000.0	9990.6	5.0

Date, Signature: 03/09/2021,

